Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Innovative approaches to assessing risk factors, diagnostics and treatment of neonatal thrombosis

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.530

Abstract

Compared to children of other ages, neonates especially seriously ill and premature subjects comprise a high thrombotic risk group. A decline in the incidence of neonatal thrombosis may be accounted for by improved treatment of severe conditions in newborns and increased survival of premature infants. Neonatal and adult hemostasis exhibit distinct physiological features: difference in concentration, synthesis rate of blood coagulation factors, metabolic rate, thrombin and plasmin levels. At the same time, neonatal threshold values for natural blood coagulation inhibitors (protein C, protein S, antithrombin, heparin cofactor II) and vitamin K-dependent coagulation factors (FII, FVII, FIX, FX) are quite low, whereas that of FVIII and von Willebrand factor exceeds those found in adults. Thus, newborns have lower plasma fibrinolytic activity. The main risk factors for developing thrombotic complications are as follows: central venous catheters, altered body fluid volume, liver disease, as well as sepsis and inflammatory processes particularly COVID-19. The significance of congenital and acquired maternal and neonatal thrombophilia may pose an additional risk factor for thrombotic complications. Low-molecular weight heparins are the first-choice drugs in treatment and prevention of neonatal thrombosis.

About the Authors

A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya – MD, Dr Sci Med, Professor, Academician of RAS, Head of the Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University; Vice-President of the Russian Society of Obstetricians and Gynecologists (RSOG); Honorary Doctor of the Russian Federation; Emeritus Professor of the University of Vienna

Scopus Author ID: 57222220144

Researcher ID: M-5660-2016

8 bldg. 2, Trubetskaya Str., Moscow 119991



A. V. Vorobev
Sechenov University
Russian Federation

Alexander V. Vorobev – MD, PhD, Associate Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 57191966265.

Researcher ID: F-8804-2017

8 bldg. 2, Trubetskaya Str., Moscow 119991



A. V. Lazarchuk
Sechenov University
Russian Federation

Arina V. Lazarchuk – 6th year Student

8 bldg. 2, Trubetskaya Str., Moscow 119991

 



S. E. Einullaeva
Sechenov University
Russian Federation

Sabina E. Einullaeva – 6th year Student

8 bldg. 2, Trubetskaya Str., Moscow 119991



N. A. Gomenko
Sechenov University
Russian Federation

Natalia A. Gomenko – 5th year Student

8 bldg. 2, Trubetskaya Str., Moscow 119991



F. A. Magomedova
Sechenov University
Russian Federation

Fatima A. Magomedova – 5th year Student

8 bldg. 2, Trubetskaya Str., Moscow 119991



V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze – MD, Dr Sci Med, Professor of RAS, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 6506003478.

Researcher ID: F-8409- 2017

8 bldg. 2, Trubetskaya Str., Moscow 119991



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 57194547147.

Researcher ID: F-8384-2017

8 bldg. 2, Trubetskaya Str., Moscow 119991

 



N. A. Makatsariya
Sechenov University
Russian Federation

Nataliya A. Makatsariya – MD, PhD, Associate Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health

Researcher ID: F-8406-2017

8 bldg. 2, Trubetskaya Str., Moscow 119991

 



V. B. Zubenko
Sechenov University; Stavropol Regional Clinical Perinatal Center
Russian Federation

Vladislav B. Zubenko – MD, Degree Seeking Applicant, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health, Sechenov University; Deputy Chief Physician for Obstetrics and Gynecology, Stavropol Regional Clinical Perinatal Center

8 bldg. 2, Trubetskaya Str., Moscow 119991,

44 Lomonosov Str., Stavropol 355002

 



M. V. Tretyakova
Sechenov University
Russian Federation

Maria V. Tretyakova – MD, PhD, Assistant, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

8 bldg. 2, Trubetskaya Str., Moscow 119991



D. V. Blinov
Sechenov University; Institute for Preventive and Social Medicine; Moscow Haass Medical – Social Institute
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Assistant, Department of Sports Medicine and Medical Rehabilitation, Sklifosovsky Institute of Clinical Medicine, Sechenov University; Head of Medical and Scientific Affairs, Institute for Preventive and Social Medicine; Associate Professor, Department of Sports, Physical and Rehabilitation Medicine, Moscow Haass Medical – Social Institute

Scopus Author ID: 6701744871.

Researcher ID: E-8906-2017.

RSCI: 9779-8290

8 bldg. 2, Trubetskaya Str., Moscow 119991,

4–10 Sadovaya-Triumfalnaya Str., Moscow 127006,

5 bldg. 1–1a, 2-ya Brestskaya Str., Moscow 123056



F. E. Yagubova
Sechenov University
Russian Federation

Fidan E. Yagubova – MD, Clinical Resident, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health

8 bldg. 2, Trubetskaya Str., Moscow 119991



N. R. Gashimova
Sechenov University
Russian Federation

Nilufar R. Gashimova – MD, Postgraduate Student, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

8 bldg. 2, Trubetskaya Str., Moscow 119991



K. N. Grigoreva
Sechenov University
Russian Federation

Kristina N. Grigoreva – MD, Assistant, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

8 bldg. 2, Trubetskaya Str., Moscow 119991



M. A. Ponimanskaya
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
Russian Federation

Maria A. Ponimanskaya – MD, PhD, Deputy Chief Medical Officer for Obstetric and Gynecological Care, Vorokhobov City Clinical Hospital No. 67

2/44 Salyama Adilya Str., Moscow 123423



O. N. Li
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
Russian Federation

Ok Nam Li – MD, PhD, Deputy Chief Medical Officer, Vorokhobov City Clinical Hospital No. 67

2/44 Salyama Adilya Str., Moscow 123423



A. V. Mostovoi
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education, Health Ministry of Russian Federation; Yaroslavl State Medical University, Health Ministry of Russian Federation
Russian Federation

Aleksei V. Mostovoi – MD, PhD, Head of Resuscitation and Intensive Care Service, Vorokhobov City Clinical Hospital No. 67; Associate Professor, Gavryushov Neonatal Department, Russian Medical Academy of Continuous Professional Education; Assistant, Department of Polyclinic Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry, Yaroslavl State Medical University; Chief External Neonatologist of the Ministry of Health of the Russian Federation in the North Caucasus Federal District

2/44 Salyama Adilya Str., Moscow 123423;

2/1 bldg. 1, Barrikadnaya Str., Moscow 123993;

5 Revolutsionnaya Str., Yaroslavl 150000



A. L. Karpova
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education, Health Ministry of Russian Federation; Yaroslavl State Medical University, Health Ministry of Russian Federation
Russian Federation

Anna L. Karpova – MD, PhD, Head of Neonatal Department of Perinatal Center, Vorohobov City Clinical Hospital No. 67; Associate Professor, Gavryushov Neonatal Department, Russian Medical Academy of Continuous Professional Education; Assistant, Department of Polyclinic Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry, Yaroslavl State Medical University

2/44 Salyama Adilya Str., Moscow 123423;

2/1 bldg. 1, Barrikadnaya Str., Moscow 123993;

5 Revolutsionnaya Str., Yaroslavl 150000



J-C. Gris
Sechenov University; University of Montpellier
Russian Federation

Jean-Christophe Gris – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University; Professor of Haematology, Head of the Laboratory of Haematology, Faculty of Biological and Pharmaceutical Sciences, Montpellier University and University Hospital of Nîmes, France; Foreign Member of RAS

Scopus Author ID: 7005114260.

Researcher ID: AAA-2923-2019

8 bldg. 2, Trubetskaya Str., Moscow 119991,

163 Rue Auguste Broussonnet, Montpellier 34090, France



I. Elalamy
Sechenov University; Medicine Sorbonne University; Hospital Tenon
Russian Federation

Ismail Elalamy – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University; Professor, Medicine Sorbonne University, Paris, France; Director of Hematology, Department of Thrombosis Center, Hospital Tenon

Scopus Author ID: 7003652413.

Researcher ID: AAC-9695-2019

8 bldg. 2, Trubetskaya Str., Moscow 119991,

12 Rue de l’École de Médecine, Paris 75006, France; 

4 Rue de la Chine, Paris 75020



References

1. Haley K.M. Neonatal venous thromboembolism. Front Pediatr. 2017;5:136. https://doi.org/10.3389/fped.2017.00136.

2. Bhat R., Kumar R., Kwon S. et al. Risk factors for neonatal venous and arterial thromboembolism in the neonatal intensive care unit – a case control study. J Pediatr. 2018;195:28–32. https://doi.org/10.1016/j.jpeds.2017.12.015.

3. van Ommen C.H., Heijboer H., Büller H.R. et al. Venous thromboembolism in childhood: a prospective two-year registry in the Netherlands. J Pediatr. 2001;139(5):676–81. https://doi.org/10.1067/mpd.2001.118192.

4. Chalmers E.A. Neonatal thrombosis. J Clin Pathol. 2000;53(6):419–23. https://doi.org/10.1136/jcp.53.6.419.

5. Robinson V., Achey M.A., Nag U.P. et al. Thrombosis in infants in the neonatal intensive care unit: analysis of a large national database. J Thromb Haemost. 2021;19(2):400–7. https://doi.org/10.1111/jth.15144.

6. Saracco P., Bagna R., Gentilomo C. et al.; Neonatal Working Group of Registro Italiano Trombosi Infantili (RITI). Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60–66.e1. https://doi.org/10.1016/j.jpeds.2015.12.035.

7. Levy-Mendelovich S., Cohen O., Klang E., Kenet G. 50 years of pediatric hemostasis: knowledge, diagnosis, and treatment. Semin Thromb Hemost. 2023;49(3):217–24. https://doi.org/10.1055/s-0042-1756704.

8. Makatsariya A., Bitsadze V., Khizroeva J. et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2022;35(6):1169–77. https://doi.org/10.1080/14767058.2020.1743668.

9. Song S., Li Z., Zhao G. et al. Epidemiology and risk factors for thrombosis in children and newborns: systematic evaluation and meta-analysis. BMC Pediatr. 2023;23(1):292. https://doi.org/10.1186/s12887-023-04122-x.

10. Andrew M., David M., Adams M. et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83:1251–7.

11. Schmidt B., Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics. 1995;96(5 Pt 1):939–43.

12. Nowak-Göttl U., von Kries R., Göbel U. Neonatal symptomatic thromboembolism in Germany: two-year survey. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F163–7. https://doi.org/10.1136/fn.76.3.f163.

13. Tuckuviene R., Christensen A.L., Helgestad J. et al. Pediatric venous and arterial noncerebral thromboembolism in Denmark: a nationwide population-based study. J Pediatr. 2011;159(4):663–9. https://doi.org/10.1016/j.jpeds.2011.03.052.

14. Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.

15. Achey M.A., Nag U.P., Robinson V.L. et al. The developing balance of thrombosis and hemorrhage in pediatric surgery: clinical implications of age-related changes in hemostasis. Clin Appl Thromb Hemost. 2020;26;1076029620929092. https://doi.org/10.1177/1076029620929092.

16. Del Vecchio A., Latini G., Henry E., Christensen R.D. Template bleeding times of 240 neonates born at 24 to 41 weeks gestation. J Perinatol. 2008;28(6):427–31. https://doi.org/10.1038/jp.2008.10.

17. Andrew M., Paes B., Bowker J., Vegh P. Evaluation of an automated bleeding time device in the newborn. Am J Hematol. 1990;35(4):275–7. https://doi.org/10.1002/ajh.2830350411.

18. Boudewijns M., Raes M., Peeters V. et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr. 2003;162(3):212–3. https://doi.org/10.1007/s00431-002-1093-7.

19. Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.

20. Cvirn G., Gallistl S., Leschnik B., Muntean W. Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb Haemost. 2003;1(2):263–8. https://doi.org/10.1046/j.1538-7836.2003.00081.x.

21. Cvirn G., Gallistl S., Rehak T. et al. Elevated thrombin-forming capacity of tissue factor-activated cord compared with adult plasma. J Thromb Haemost. 2003;1(8):1785–90. https://doi.org/10.1046/j.1538-7836.2003.00320.x.

22. Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651–7.

23. Neary E., McCallion N., Kevane B. et al. Coagulation indices in very preterm infants from cord blood and postnatal samples. J Thromb Haemost. 2015;13(11):2021–30. https://doi.org/10.1111/jth.13130.

24. Nako Y., Ohki Y., Harigaya A. et al. Plasma thrombomodulin level in very low birthweight infants at birth. Acta Paediatr. 1997;86(10):1105–9. https://doi.org/10.1111/j.1651-2227.1997.tb14817.x.

25. Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130–6. https://doi.org/10.1038/jp.2008.141.

26. Sillers L., Van Slambrouck C., Lapping-Carr G. Neonatal thrombocytopenia: etiology and diagnosis. Pediatr Ann. 2015;44(7):e175– 80. https://doi.org/10.3928/00904481-20150710-11.

27. Bednarek F.J., Bean S., Barnard M.R. et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res. 2009;124(1):42–5. https://doi.org/10.1016/j.thromres.2008.10.004.

28. Waller A.K., Lantos L., Sammut A. et al. Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res. 2019;85():874–84. https://doi.org/10.1038/s41390-019-0316-9.

29. Sitaru A.G., Holzhauer S., Speer C.P. et al. Neonatal platelets from cord blood and peripheral blood. Platelets. 2005;16(3–4):203–10. https://doi.org/10.1080/09537100400016862.

30. Andres O., Schulze H., Speer C.P. Platelets in neonates: Central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost. 2015;113(1):3–12. https://doi.org/10.1160/TH14-05-0476.

31. Davenport P., Sola-Visner M. Platelets in the neonate: not just a small adult. Res Pract Thromb Haemost. 2022;6(3):e12719. https://doi.org/10.1002/rth2.12719.

32. Israels S.J., Cheang T., Roberston C. et al. Impaired signal transduction in neonatal platelets. Pediatr Res. 1999;45(5 Pt 1):687–91. https://doi.org/10.1203/00006450-199905010-00014.

33. Hardy A.T., Palma-Barqueros V., Watson S.K. et al. Significant hyporesponsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost. 2018;118(6):1009–20. https://doi.org/10.1055/s-0038-1646924.

34. Schlagenhauf A., Schweintzger S., Birner-Grünberger R. et al. Comparative evaluation of PAR1, GPIb-IX-V, and integrin αIIbβ3 levels in cord and adult platelets. Hamostaseologie. 2010;30 Suppl 1:S164–7.

35. Palma-Barqueros V., Torregrosa J.M., Caparrós-Pérez E. et al. Developmental differences in platelet inhibition response to prostaglandin E1. Neonatology. 2020;117(1):15–23. https://doi.org/10.1159/000504173.

36. Pelizza M.F., Martinato M., Rosati A. et al. The new Italian registry of infantile thrombosis (RITI): a reflection on its journey, challenges and pitfalls. Front Pediatr. 2023;11:1094246. https://doi.org/10.3389/fped.2023.1094246.

37. Martinez-Biarge M., Ferriero D.M., Cowan F.M. Perinatal arterial ischemic stroke. Handb Clin Neurol. 2019;162:239–66. https://doi.org/10.1016/B978-0-444-64029-1.00011-4.

38. Lynch J.K., Hirtz D.G., DeVeber G., Nelson K.B. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics. 2002;109(1):116–23. https://doi.org/10.1542/peds.109.1.116.

39. Hunt R.W., Inder T.E. Perinatal and neonatal ischaemic stroke: a review. Thromb Res. 2006;118(1):39–48. https://doi.org/10.1016/j.thromres.2004.12.021.

40. Gacio S., Muñoz Giacomelli F., Klein F. Presumed perinatal ischemic stroke: a review. Arch Argent Pediatr. 2015;113(5):449–55. (English, Spanish). https://doi.org/10.5546/aap.2015.eng.449.

41. Elbers J., Viero S., MacGregor D. et al. Placental pathology in neonatal stroke. Pediatrics. 2011;127(3):e722–9. https://doi.org/10.1542/peds.2010-1490.

42. Günther G., Junker R., Sträter R. et al.; Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke. 2000;31(10):2437–41. https://doi.org/10.1161/01.str.31.10.2437.

43. Dlamini N., Billinghurst L., Kirkham F.J. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21(3):511–27. https://doi.org/10.1016/j.nec.2010.03.006.

44. deVeber G., Andrew M., Adams C. et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345():417–23. https://doi.org/10.1056/NEJM200108093450604.

45. Wasay M., Dai A.I., Ansari M. et al. Cerebral venous sinus thrombosis in children: A multicenter cohort from the United States. J Child Neurol. 2008;23(1):26–31. https://doi.org/10.1177/0883073807307976.

46. Manco-Johnson M.J. How I treat venous thrombosis in children. Blood. 2006;107(1):21–9. https://doi.org/10.1182/blood-2004-11-4211.

47. Moharir M.D., Shroff M., Pontigon A.M. et al. A prospective outcome study of neonatal cerebral sinovenous thrombosis. J Child Neurol. 2011;26(9):1137–44. https://doi.org/10.1177/0883073811408094.

48. Zhu W., Zhang H., Xing Y. Clinical characteristics of venous thrombosis associated with peripherally inserted central venous catheter in premature infants. Children (Basel). 2022;9(8):1126. https://doi.org/10.3390/children9081126.

49. Ulloa-Ricardez A., Romero-Espinoza L., Estrada-Loza Mde J. et al. Risk factors for intracardiac thrombosis in the right atrium and superior vena cava in critically ill neonates who required the installation of a central venous catheter. Pediatr Neonatol. 2016;57(4):288–94. https://doi.org/10.1016/j.pedneo.2015.10.001.

50. Cholette J.M., Rubenstein J.S., Alfieris G.M. et al. Elevated risk of thrombosis in neonates undergoing initial palliative cardiac surgery. Ann Thorac Surg. 2007;84(4):1320–5. https://doi.org/10.1016/j.athoracsur.2007.05.026.

51. Fenton K.N., Siewers R.D., Rebovich B., Pigula F.A. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg. 2003;76(1):152–6. https://doi.org/10.1016/s0003-4975(03)00168-1.

52. Messinger Y., Sheaffer J.W., Mrozek J. et al. Renal outcome of neonatal renal venous thrombosis: review of 28 patients and effectiveness of fibrinolytics and heparin in 10 patients. Pediatrics. 2006;118(5):e1478–84. https://doi.org/10.1542/peds.2005-1461.

53. Moon C.J., Kwon T.H., Lee H.S. Portal vein thrombosis and food proteininduced allergic proctocolitis in a premature newborn with hypereosinophilia: a case report. BMC Pediatr. 2021;21(1):49. https://doi.org/10.1186/s12887-021-02510-9.

54. Tsonis O., Gouvias T., Gkrozou F. et al. Neonatal femoral artery thrombosis at the time of birth: a case report. J Pediatr Neonatal Individ Med. 2020;9(2):e090214. https://doi.org/10.7363/090214.

55. Mahasandana C., Suvatte V., Marlar R.A. et al. Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet. 1990;335(8680):61–2. https://doi.org/10.1016/0140-6736(90)90201-f.

56. Hattenbach L.O., Beeg T., Kreuz W., Zubcov A. Ophthalmic manifestation of congenital protein C deficiency. J AAPOS. 1999;3(3):188–90. https://doi.org/10.1016/s1091-8531(99)70066-2.

57. Chalmers E., Cooper P., Forman K. et al. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96(11):1066–71. https://doi.org/10.1136/adc.2010.199919.

58. Marlar R.A., Montgomery R.R., Broekmans A.W. Diagnosis and treatment of homozygous protein C deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. J Pediatr. 1989;114(4 Pt 1):528–34. https://doi.org/10.1016/s0022-3476(89)80688-2.

59. van Ommen C.H., Sol J.J. Developmental hemostasis and management of central venous catheter thrombosis in neonates. Semin Thromb Hemost. 2016;42(7):752–9. https://doi.org/10.1055/s-0036-1592299.

60. Thornburg C.D., Smith P.B., Smithwick M.L. et al. Association between thrombosis and bloodstream infection in neonates with peripherally inserted catheters. Thromb Res. 2008;122(6):782–5. https://doi.org/10.1016/j.thromres.2007.10.001.

61. Bhatt M.D., Chan A.K. Venous thrombosis in neonates. Fac Rev. 2021;10;20. https://doi.org/10.12703/r/10-20.

62. Dubbink-Verheij G.H., Pelsma I.C.M., van Ommen C.H. et al. Femoral vein catheter is an important risk factor for catheter-related thrombosis in (near-)term neonates. J Pediatr Hematol Oncol. 2018;40(2):e64–e68. https://doi.org/10.1097/MPH.0000000000000978.

63. Amankwah E.K., Atchison C.M., Arlikar S. et al. Risk factors for hospitalassociated venous thromboembolism in the neonatal intensive care unit. Thromb Res. 2014;134(2):305–9. https://doi.org/10.1016/j.thromres.2014.05.036.

64. Tuckuviene R., Christensen A.L., Helgested J. et al. Infant, obstetrical and maternal characteristics associated with thromboembolism in infancy: a nationwide population-based case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F417–22. https://doi.org/10.1136/archdischild-2011-300665.

65. Bhat R., Kwon S., Zaniletti I. et al. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: a multicentre casecontrol study. Lancet Haematol. 2022;9(3):e200–e207. https://doi.org/10.1016/S2352-3026(21)00399-9.

66. Vorobev A.V., Bitsadze V.O., Khizroeva J.Kh. et al. Neonatal thrombosis: risk factors and principles of prophylaxis. Obstetrics, Gynecology and Reproduction. 2021;15(4):390–403. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.233.

67. Walker S.C., Creech C.B., Domenico H.J. et al. A real-time risk-prediction model for pediatric venous thromboembolic events. Pediatrics. 2021;147(6):e2020042325. https://doi.org/10.1542/peds.2020-04232.

68. Ovesen P.G., Jensen D.M., Damm P. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nationwide study. J Matern Fetal Neonatal Med. 2015;28(14):1720–4. https://doi.org/10.3109/14767058.2014.966677.

69. Simchen M.J., Goldstein G., Lubetsky A. et al. Factor v Leiden and antiphospholipid antibodies in either mothers or infants increase the risk for perinatal arterial ischemic stroke. Stroke. 2009;40(1):65–70. https://doi.org/10.1161/STROKEAHA.108.527283.

70. Kenet G., Lütkhoff L.K., Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121(16):1838–47. https://doi.org/10.1161/CIRCULATIONAHA.109.913673.

71. Campos L.M., Kiss M.H., D'Amico E.A., Silva C.A. Antiphospholipid antibodies and antiphospholipid syndrome in 57 children and adolescents with systemic lupus erythematosus. Lupus. 2003;12(11):820–6. https://doi.org/10.1191/0961203303lu471oa.

72. Kenet G., Aronis S., Berkun Y. et al. Impact of persistent antiphospholipid antibodies on risk of incident symptomatic thromboembolism in children: a systematic review and meta-analysis. Semin Thromb Hemost. 2011;37(7):802–9. https://doi.org/10.1055/s-0031-1297171.

73. Avcin T., Cimaz R., Meroni P.L. Recent advances in antiphospholipid antibodies and antiphospholipid syndromes in pediatric populations. Lupus. 2002;11(1):4–10. https://doi.org/10.1191/0961203302lu146rr.

74. Berkun Y., Padeh S., Barash J. et al. Antiphospholipid syndrome and recurrent thrombosis in children. Arthritis Rheum. 2006;55(6):850–5. https://doi.org/10.1002/art.22360.

75. Berkun Y., Simchen M.J., Strauss T. et al. Antiphospholipid antibodies in neonates with stroke--a unique entity or variant of antiphospholipid syndrome? Lupus. 2014;23(10):986–93. https://doi.org/10.1177/0961203314531842.

76. Boffa M.C., Lachassinne E. Infant perinatal thrombosis and antiphospholipid antibodies: a review. Lupus. 2007;16(8):634–41. https://doi.org/10.1177/0961203307079039.

77. Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295– 306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.

78. Young G., Albisetti M., Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and metaanalysis of observational studies. Circulation. 2008;118(13):1373–82. https://doi.org/10.1161/CIRCULATIONAHA.108.789008.

79. Nowak-Göttl U., Junker R., Kreuz W. et al.; Childhood Thrombophilia Study Group. Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. Blood. 2001;97(4):858–62. https://doi.org/10.1182/blood.v97.4.858.

80. Limperger V., Kenet G., Goldenberg N.A. et al. Impact of high-risk thrombophilia status on recurrence among children with a first non-centralvenous-catheter-associated VTE: an observational multicentre cohort study. Br J Haematol. 2016;175(1):133–40. https://doi.org/10.1111/bjh.14192.

81. Fletcher-Sandersjöö A., Bellander B.M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36–41. https://doi.org/

82. Gashimova N.R., Pankratyeva L.L., Bitsadze V.O. et al. Intrauterine activation of the fetal immune system in response to maternal COVID-19. Obstetrics, Gynecology and Reproduction. 2023;17(2):188–201. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.404.

83. Bitsadze V.O., Grigoreva K.N., Khizroeva J.K. et al. Novel coronavirus infection and Kawasaki disease. J Matern Fetal Neonatal Med. 2022;35(16):3044–8. https://doi.org/10.1080/14767058.2020.1800633.

84. Barrero-Castillero A., Beam K.S., Bernardini L.B. et al.; Harvard NeonatalPerinatal Fellowship COVID-19 Working Group. COVID-19: neonatalperinatal perspectives. J Perinatol. 2021;41(5):940–51. https://doi.org/10.1038/s41372-020-00874-x.

85. Leeman R., Shoag J., Borchetta M. et al. Clinical implications of hematologic and hemostatic abnormalities in children with COVID-19. J Pediatr Hematol Oncol. 2022;44(1):e282–e286. https://doi.org/10.1097/MPH.0000000000002176.

86. Helms J., Tacquard C., Severac F. et al.; CRICS TRIGGERSEP Group (Clinical research in intensive care and sepsis trial group for global evaluation and research in sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46():1089–98. https://doi.org/10.1007/s00134-020-06062-x.

87. Campi F., Longo D., Bersani I. et al. Neonatal cerebral venous thrombosis following maternal SARS-CoV-2 infection in pregnancy. Neonatology. 2022;119(2):268–72. https://doi.org/10.1159/00052053.

88. Baergen R.N., Heller D.S. Placental pathology in COVID-19 positive mothers: preliminary findings. Pediatr Dev Pathol. 2020;23():177–80. https://doi.org/10.1177/1093526620925569.

89. Dashraath P., Wong J.L.J., Lim M.X.K. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521–31. https://doi.org/10.1016/j.ajog.2020.03.021.

90. Stephens A.J., Barton J.R., Bentum N.A. et al. General guidelines in the management of an obstetrical patient on the labor and delivery unit during the COVID-19 pandemic. Am J Perinatol. 2020;37(8):829–36. https://doi.org/10.1055/s-0040-1710308.

91. Monagle P., Chan A.K.C., Goldenberg N.A. et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians EvidenceBased Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S– e801S. https://doi.org/10.1378/chest.11-2308.

92. Ting J., Yeung K., Paes B. et al.; Thrombosis and Hemostasis in Newborns (THiN) Group. How to use low-molecular-weight heparin to treat neonatal thrombosis in clinical practice. Blood Coagul Fibrinolysis. 2021;32(8):531–8. https://doi.org/10.1097/MBC.0000000000001052.

93. Kenet G., Cohen O., Bajorat T., Nowak-Göttl U. Insights into neonatal thrombosis. Thromb Res. 2019;181 Suppl 1:S33–S36. https://doi.org/10.1016/S0049-3848(19)30364-0.

94. Monagle P., Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematol Am Soc Hematol Educ Program. 2018;2018(1):399–404. https://doi.org/10.1182/asheducation-2018.1.399.

95. Male C., Thom K., O’Brien S.H. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85. https://doi.org/10.1016/j.thromres.2018.06.021.

96. Pagowska-Klimek I. Perioperative thromboembolism prophylaxis in children – is it necessary? Anaesthesiol Intensive Ther. 2020;52(4):316– 22. https://doi.org/10.5114/ait.2020.97599.


What is already known about this subject?

► Neonatal thrombosis is a quire rare but serious condition that can be fatal for newborns.

► One of the main risk factors for development of neonatal thrombosis is application of central venous catheters.

► Treatment of neonatal thrombosis is a complex process that requires a personalized approach based on thrombus location, patient health condition and other additional risk factors.

What are the new findings?

► New data on risk factors for neonatal thrombosis are presented, taking into account up-to-date research data.

► The influence of congenital and acquired thrombophilia, thromboinflammation and maternal COVID-19 infection on developing neonatal thrombosis was analyzed.

► New methods for prevention and treatment of neonatal thrombosis are discussed able to assist in lowering neonatal mortality and morbidity.

How might it impact on clinical practice in the foreseeable future?

► Implementation of new risk assessment methods for more accurate prediction of developing neonatal thrombosis may prevent it and improve patient outcome.

► Innovative diagnostic approaches described in the article can provide faster and more accurate detection of thrombosis or prethrombotic state, which will allow to apply a proactive treatment and increase therapeutic effectiveness.

► New treatment strategies may lead to revision of approved recommendations for management of patients with neonatal thrombosis.

Review

For citations:


Makatsariya A.D., Vorobev A.V., Lazarchuk A.V., Einullaeva S.E., Gomenko N.A., Magomedova F.A., Bitsadze V.O., Khizroeva J.Kh., Makatsariya N.A., Zubenko V.B., Tretyakova M.V., Blinov D.V., Yagubova F.E., Gashimova N.R., Grigoreva K.N., Ponimanskaya M.A., Li O.N., Mostovoi A.V., Karpova A.L., Gris J., Elalamy I. Innovative approaches to assessing risk factors, diagnostics and treatment of neonatal thrombosis. Obstetrics, Gynecology and Reproduction. 2024;18(3):382-400. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.530

Views: 1205


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)