Magnetic resonance imaging in cervical cancer: current opportunities of radiomics analysis and prospects for its further developmen
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.440
Abstract
Introduction. Due to the dynamic development of modern imaging technologies in recent years, much attention has been paid to radiomics particularly texture analysis. The complexity of clinically evaluated tumor procession in cervical cancer (CC) accounts for a need to expand knowledge on applying medical imaging technologies in oncologic diagnostics spanning from predominantly qualitative analysis to a multiparametric approach, including a quantitative assessment of study parameters.
Aim: to analyze the literature data on the use of radiomics and image texture analysis in diagnostics and prediction of aggressiveness of oncogynecological diseases including СС.
Materials and Methods. A 2016–2023 systematic literature search was carried out in the PubМed/MEDLINE, eLibrary, Scopus databases, NCCN, ESUR, ACR resources. All publications on radiomics and image texture analysis used in CC diagnostics and prediction were investigated, with queries for key words and phrases in Russian and English: «cervical cancer», «radiomics»,
«texture analysis», «oncology». The study included full-text sources and literature reviews on the study subject. Duplicate publications were excluded.
Results. The features and advantages of using radiomics and image texture analysis in CC diagnostics were summarized. The introduction of the radiomic approach has expanded the views on interpretation of medical imaging data. The radiomics-based parameters extracted from digital images revealed high informativeness in some studies that contribute to improving diagnostic accuracy as well as expanding opportunities for predicting therapeutic effectiveness in CC patients.
Conclusion. Radiomics used in diagnostics of oncogynecologic diseases including СС is one of the promising actively developing areas of analysis in radiology that requires to be further investigated.
About the Authors
A. E. SolopovaRussian Federation
Alina E. Solopova – MD, Dr Sci Med, Leading Researcher, Radiology Department, Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology; Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University
Scopus Author ID: 24460923200
Researcher ID: P-8659-2015
4 Academika Oparina Str., Moscow 117997,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
J. V. Nosova
United Arab Emirates
Julia V. Nosova – MD, PhD, Specialist in Obstetrics and Gynecology Department
3/5 Hessa Str., Al Barsha South 3, Hadaek Mohammed Bin Rashid, Dubai, United Arab Emirates
B. B. Bendzhenova
Russian Federation
Bova B. Bendzhenova – MD, Obstetrician-Gynecologist, Oncologist, Gynecological Department
5 2nd Botkinsky Passage, Moscow 125284
References
1. Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
2. Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4. https://doi.org/10.1016/j.ijgo.2009.02.012.
3. Petsuksiri1 J., Jaishuen A., Pattaranutaporn P., Chansilpa Y. Advanced imaging applications for locally advanced cervical cancer. Asian Pacific J Cancer Prev. 2012;13(5):1713–8. https://doi.org/10.7314/APJCP.2012.13.5.1713.
4. Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynecol Obstet. 2018;143 Suppl 2:22–36. https://doi.org/10.1002/ijgo.12611.
5. Sala E., Rockall A.G., Freeman S.J. et al. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology. 2013;266(3);717–40. https://doi.org/10.1148/radiol.12120315.
6. Gui B., Miccò M., Valentini A.L. et al. Prospective multimodal imaging assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery – the "PRICE" study 2: role of conventional and DW-MRI. Eur Radiol. 2019;29(4):2045–57. https://doi.org/10.1007/s00330-018-5768-5.
7. Valentini A.L., Miccò M., Gui B. et al. The PRICE study: The role of conventional and diffusion-weighted magnetic resonance imaging in assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery. Eur Radiol. 2018;28(6):2425–35. https://doi.org/10.1007/s00330-017-5233-x.
8. Jalaguier-Coudray A., Villard-Mahjoub R., Delouche A. et al. Value of dynamic contrast-enhanced and diffusion-weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: A retrospective observational study. Radiology. 2017;284(2):432–42. https://doi.org/10.1148/radiol.2017161299.
9. Schreuder S.M., Lensing R., Stoker J., Bipat S. Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: A systematic review. J Magn Reson Imaging. 2015;42(3):572–94. https://doi.org/10.1002/jmri.24784.
10. Lambin P., Rios-Velazquez E., Leijenaar R. et al. Radiomics: extracting more Information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6. https://doi.org/10.1016/j.ejca.2011.11.036.
11. Lucia F., Visvikis D., Desseroit M.-C. et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45(5):768–86. https://doi.org/10.1007/s00259-017-3898-7.
12. Torheim T., Groendahl A.R., Andersen E.K.F. et al. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol. 2016;55(11):1294–8. https://doi.org/10.1080/0284186X.2016.1189091.
13. Koh W.-J., Abu-Rustum N.R., Bean S. et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(1):64–84. https://doi.org/10.6004/jnccn.2019.0001.
14. Quinn M.A., Benedet J.L., Odicino F. et al. Carcinoma of the cervix uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;95 Suppl 1:S43–103. https://doi.org/10.1016/S0020-7292(06)60030-1.
15. Guan Y., Li W., Jiang Z. et al. Whole-lesion apparent Diffusion coefficient-based entropy-related parameters for characterizing cervical cancers: initial findings. Acad Radiol. 2016;23(12):1559–67. https://doi.org/10.1016/j.acra.2016.08.010.
16. Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy for locally advanced cervical cancer: a systematic review and meta-analysis of individual patient data from 21 randomised trials. Eur J Cancer.2003;39(17):2470–86. https://doi.org/10.1016/s0959-8049(03)00425-8.
17. Michel G., Morice P., Castaigne D. et al. Lymphatic spread in stage Ib and II cervical carcinoma: anatomy and surgical implications. Obstet Gynecol. 1998;91(3):360–3. https://doi.org/10.1016/s0029-7844(97)00696-0.
18. Bhatla N., Berek J.S., Fredes M.C. et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2019;145(1):129–35. https://doi.org/10.1002/ijgo.12749.
19. Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur Radiol. 2021;31(10):7802–16. https://doi.org/10.1007/s00330-020-07632-9.
20. Rockall A.G., Ghosh S., Alexander-Sefre F. еt al. Can MRI rule out bladder and rectal invasion in cervical cancer to help select patients for limited EUA. Gynecol Oncol. 2006;101(2):244–9. https://doi.org/10.1016/j.ygyno.2005.10.012.
21. Кwee T.C., Takahara T., Ochiai R. et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potentional applications in oncology. Eur Radiol. 2008;18(9):1937–52. https://doi.org/10.1007/s00330-008-0968-z.
22. Koh D.M, Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35. https://doi.org/10.2214/AJR.06.1403.
23. Figueiras R.G., Goh V., Padhani A.R. et al. The role of functional imaging in colorectal cancer. AJR Am J Roentgenol. 2010;195(1):54–66. https://doi.org/10.2214/AJR.10.4422.
24. Kuang F., Ren J., Zhong Q. et al. The value of apparent diffusion coefficient in the assessment of cervical cancer. Eur Radiol. 2013;23(4):1050–8. https://doi.org/10.1007/s00330-012-2681-1.
25. Liu Y., Bai R., Sun H. et al. Diffusion weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol. 2009;64(11):1067–74. https://doi.org/10.1016/j.crad.2009.07.010.
26. Chen Y.B., Hu C.M., Chen G.L. et al. Staging of uterine cervical carcinoma: whole body diffusion-weighted magnetic resonance imaging. Abdom Imaging. 2011;36(5):619–26. https://doi.org/10.1007/s00261-010-9642-4.
27. Qi Y.-F., He Y.-L., Lin C.-Y. et al. Diffusion-weighted imaging of cervical cancer: feasibility of ultra-high b-value at 3T. Eur J Radiol. 2020;124:108779. https://doi.org/10.1016/j.ejrad.2019.108779.
28. Chung H.H., Kang S.-B., Cho J.Y. et al. Can preoperative MRI accurately evaluate nodal and parametrial invasion in early stagе cervical cancer? Jpn J Clin Oncol. 2007;37(5):370–5. https://doi.org/10.1093/jjco/hym036.
29. Kim S.H., Han M.C. Invasion of the urinary bladder by uterine cervical carcinoma: evaluation with MR imaging. AJR Am J Roentgenol. 1997;168(2):393–7. https://doi.org/10.2214/ajr.168.2.9016214.
30. Mirestean C.C., Pagute O., Buzea C. et al. Radiomic machine learning and texture analysis – new horizons for head and neck oncology. Maedica (Bucur). 2019;14(2):126–30. https://doi.org/10.26574/maedica.2019.14.2.126.
31. Giganti F., Antunes S., Salerno A. et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol. 2017;27(5):1831–9. https://doi.org/10.1007/s00330-016-4540-y.
32. Beig N., Khorrami M., Alilou M. et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology. 2019;290(3):783–92. https://doi.org/10.1148/radiol.2018180910.
33. Sidhu H.S., Benigno S., Ganeshan B. et al. Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur Radiol. 2017;27(6):2348–58. https://doi.org/10.1007/s00330-016-4579-9.
34. Ueno Y., Forghani B., Forghani R. et al. Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification – a preliminary analysis. Radiology. 2017;284(3):748–57. https://doi.org/10.1148/radiol.2017161950.
35. Lakhman Y., Veeraraghavan H., Chaim J. et al. Differentiation of uterine leiomyosarcoma from atypical leiomyoma: diagnostic accuracy of qualitative MR imaging features and feasibility of texture analysis. Eur Radiol. 2017;27(7):2903–15. https://doi.org/10.1007/s00330-016-4623-9.
36. De Cecco C.N., Ciolina M., Caruso D. et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY). 2016;41(9):1728–35. https://doi.org/10.1007/s00261-016-0733-8.
37. Liu Z., Zhang X.Y., Shi Y.J. et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res. 2017;23(23):7253–62. https://doi.org/10.1158/1078-0432.CCR-17-1038.
38. Gardin I., Grégoire V., Gibon D. et al. Radiomics: principles and radiotherapy applications. Crit Rev Oncol Hematol. 2019;138:44–50. https://doi.org/10.1016/j.critrevonc.2019.03.015.
39. Chaddad A., Kucharczyk M.J., Daniel P. et al. Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol. 2019;9:374. https://doi.org/10.3389/fonc.2019.00374.
40. van Velden F.H., Kramer G.M., Frings V. et al. Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18(5):788–95. https://doi.org/10.1007/s11307-016-0940-2.
41. Nioche C., Orlhac F., Boughdad S. et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78(16):4786–9. https://doi.org/10.1158/0008-5472.can-18-0125.
42. Zhang L., Fried D.V., Fave X.J. et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42(3):1341–53. https://doi.org/10.1118/1.4908210.
43. Wu J., Tha K.K., Xing L., Li R. Radiomics and radiogenomics for precision radiotherapy. J Radiat Res. 2018;59(suppl_1):i25–i31. https://doi.org/10.1093/jrr/rrx102.
44. Coroller T.P., Grossmann P., Hou Y. et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3):345–50. https://doi.org/10.1016/j.radonc.2015.02.015.
45. Mattonen S.A., Palma D.A., Johnson C. et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94(5):1121–8. https://doi.org/10.1016/j.ijrobp.2015.12.369.
46. Cook G.J., Yip C., Siddique M. et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54(1):19–26. https://doi.org/10.2967/jnumed.112.107375.
47. Huang Y., Liu Z., He L. et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281(3):947–57. https://doi.org/10.1148/radiol.2016152234.
48. Stanzione A., Cuocolo R., Del Grosso R. et al. Deep myometrial infiltration of endometrial cancer on MRI: a radiomics-powered machine learning pilot study. Acad Radiol. 2021;28(5):737–44. https://doi.org/10.1016/j.acra.2020.02.028.
49. Miccò M., Gui B., Russo L. et al. Preoperative tumor texture analysis on MRI for high-risk disease prediction in endometrial cancer: a hypothesis-generating study. J Pers Med. 2022;12(11):1854. https://doi.org/10.3390/jpm12111854.
50. Cheng M., Tan S., Ren T. et al. Magnetic resonance imaging radiomics to differentiate ovarian sex cord-stromal tumors and primary epithelial ovarian cancers. Front Oncol. 2023;12:1073983. https://doi.org/10.3389/fonc.2022.1073983.
51. Fang M., Kan Y., Dong D. et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer. Front Oncol. 2020;10:563. https://doi.org/10.3389/fonc.2020.00563.
52. Gien L., Gien L.T., Covens A. Lymph node assessment in cervical cancer: prognostic and therapeutic implications. J Surg Oncol. 2009;99(4):242–47. https://doi.org/10.1002/jso.21199.
53. Small W., Bacon M.A., Bajaj A. et al. Cervical cancer: a global health crisis.Cancer. 2017;123(13):2404–12. https://doi.org/10.1002/cncr.30667.
54. Ferrandina G., Anchora L.P., Gallotta V. et al. Can we define the risk of lymph node metastasis in early-stage cervical cancer patients? A largescale, retrospective study. Ann Surg Oncol. 2017;24(8):2311–8. https://doi.org/10.1245/s10434-017-5917-0.
55. Macdonald M.C., Tidy J.A. Can we be less radical with surgery for early cervical cancer? Curr Oncol Rep. 2016;18(3):16. https://doi.org/10.1007/s11912-016-0501-5.
56. Kadkhodayan S., Hasanzadeh M., Treglia G. et al. Sentinel node biopsy for lymph nodal staging of uterine cervix cancer: a systematic review and meta-analysis of the pertinent literature. Eur J Surg Oncol. 2015;41(1):1–20. https://doi.org/10.1016/j.ejso.2014.09.010.
57. Wang T., Gao T., Yang J. et al. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging. Eur J Radiol. 2019;114:128–35. https://doi.org/10.1016/j.ejrad.2019.01.003.
58. Becker A.S., Ghafoor S., Marcon M. et al. MRI texture features may predict differentiation and nodal stage of cervical cancer: a pilot study. Acta Radiol Open. 2017;6(10):205846011772957. https://doi.org/10.1177/2058460117729574.
59. Li X.X., Lin T.-T., Liu B., Wei W. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2-weighted images. Front Bioeng Biotechnol. 2020;8:590. https://doi.org/10.3389/fbioe.2020.00590.
60. Avanzo M., Stancanello J., El Naqa I. Beyond imaging: the promise of radiomics. Phys Med. 2017;38:122–39. https://doi.org/10.1016/j.ejmp.2017.05.071.
Review
For citations:
Solopova A.E., Nosova J.V., Bendzhenova B.B. Magnetic resonance imaging in cervical cancer: current opportunities of radiomics analysis and prospects for its further developmen. Obstetrics, Gynecology and Reproduction. 2023;17(4):500-511. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.440
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.