Metalloproteinases as biochemical markers of pregnancy pathology
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.275
Abstract
The success in modern biology has significantly enriched scientific understanding of the pathogenetic basis underlying some diseases, including obstetric and gynecological practice. Despite this, the etiology and pathogenesis of some conditions are not yet fully elucidated. One of the approaches is to study metalloproteinases during pregnancy, particularly concerning occurrence of formidable complication such as preeclampsia, which diagnostics and significance have been continuously revised. Preeclampsia is a disease that leads altered course of pregnancy, and sometimes even to maternal and/or fetal death. Currently, no specific treatment for preeclampsia has been proposed, but early prognosis is crucial for a more favorable maternal and fetal outcome. Given that metalloproteinase activity is able to influence trophoblast invasion and remodeling of spiral arteries, insights into such processes are of high importance.
About the Authors
K. N. GrigorievaRussian Federation
MD, Medical Resident, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
V. O. Bitsadze
Russian Federation
MD, Dr Sci Med, Professor of RAS, Professor, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
J. Kh. Khizroeva
Russian Federation
MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
M. V. Tretyakova
Russian Federation
MD, PhD, Obstetrician-Gynecologist, Assistant, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
D. V. Blinov
Russian Federation
MD, PhD, MBA, Head of Medical and Scientific Affairs, 4–10 Sadovaya-Triumfalnaya Str., Moscow 127006;
Neurologist, 111, 1st Uspenskoe Highway, Lapino, Odintsovo District, Moscow region 143081
N. A. Makatsariya
Russian Federation
MD, PhD, Associate Professor, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
V. I. Tsibizova
Russian Federation
MD, PhD, Obstetrician-Gynecologist, Research Laboratory of Operative Gynecology;
Physician, Department of Functional and Ultrasound Diagnostics, 2 Akkuratova Str., Saint Petersburg 197341
I. A. Nakaidze
Russian Federation
MD, Postgraduate Student, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
N. R. Gashimova
Russian Federation
MD, Postgraduate Student, Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
E. Grandone
Italy
MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology, Filatov Clinical Institute of Children’s Health, 2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991;
Head of the Department of Thrombosis and Hemostasis, 1 Viale Cappuccini, San Giovanni Rotondo 71013
A. D. Makatsariya
Russian Federation
MD, Dr Sci Med, Professor, Academician of RAS, Head of the Department of Obstetrics and Gynecology,
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
References
1. Baker A.H., Edwards D.R., Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115(Pt 19):3719–27. https://doi.org/10.1242/jcs.00063.
2. Liu J., Khalil R.A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 2017;148:355–420. https://doi.org/10.1016/bs.pmbts.2017.04.003.
3. Radisky E.S., Raeeszadeh-Sarmazdeh M., Radisky D.C. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem. 2017;118(11):3531–48. https://doi.org/10.1002/jcb.26185.
4. Khalil R.A. Matrix metalloproteinases and tissue remodeling in health and disease: cardiovascular remodeling. Prog Mol Biol Transl Sci. 2017;147:1–308.
5. Singh D., Srivastava S.K., Chaudhuri T.K., Upadhyay G. Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci. 2015;2:19. https://doi.org/10.3389/fmolb.2015.00019.
6. Craig V.J., Zhang L., Hagood J.S., Owen C.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol. 2015;53(5):585–600. https://doi.org/10.1165/rcmb.2015-0020TR.
7. Rivera S., Garcia-Gonzalez L., Khrestchatisky M., Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell Mol Life Sci. 2019;76(16):3167– 91. https://doi.org/10.1007/s00018-019-03178-2.
8. Azevedo A., Prado A.F., Antonio R.C. et al. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol. 2014;115(4):301–14. https://doi.org/10.1111/bcpt.12282.
9. Mahalanobish S., Saha S., Dutta S., Sil P.C. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res. 2020;152:104591. https://doi.org/10.1016/j.phrs.2019.104591.
10. Woessner J.F. MMPs and TIMPs – an historical perspective. Mol Biotechnol. 2002;22(1):33–49. https://doi.org/10.1385/MB:22:1:033.
11. Yu W.H., Yu S., Meng Q. et al. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000;275(40):31226–32. https://doi.org/10.1074/jbc.M000907200.
12. Gersh I., Catchpole H.R. The organization of ground substance and basement membrane and its significance in tissue injury disease and growth. Am J Anat. 1949;85(3):457–521. https://doi.org/10.1002/aja.1000850304.
13. Zitka O., Kukacka J., Krizkova S. et al. Matrix metalloproteinases. Cur Med Chem. 2010;17(31):3751–68. https://doi.org/10.2174/0929867107932137 24.
14. Verma R.P., Hansch C. Matrix metalloproteinases (MMPs): chemicalbiological functions and (Q)SARs. Bioorg Med Chem. 2007;15:2223–68. https://doi.org/10.1016/j.bmc.2007.01.011.
15. Gross J., Lapierre С.M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A. 1962;48(6):1014–22. https://doi.org/10.1073/pnas.48.6.1014.
16. Raffetto J.D., Khalil R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75(2):346–59. https://doi.org/10.1016/j.bcp.2007.07.004.
17. Tallant C., Marrero A., Gomis-Rüth F.X. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20–8. https://doi.org/10.1016/j.bbamcr.2009.04.003.
18. Tokuhara C.K., Santesso M.R., de Oliveira G.S.N. et al. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci. 2019;27:e20180596. https://doi.org/10.1590/1678-7757-2018-0596.
19. Fischer T., Senn N., Riedl R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry. 2019;25(34):7960–80. https://doi.org/10.1002/chem.201805361.
20. Ulbrich S.E., Meyer S.U., Zitta K. et al. Bovine endometrial metallopeptidases MMP14 and MMP2 and the metallopeptidase inhibitor TIMP2 participate in maternal preparation of pregnancy. Mol Cell Endocrinol. 2011;332(1–2):48–57. https://doi.org/10.1016/j.mce.2010.09.009.
21. Zhang X., Qi C., Lin J. Enhanced expressions of matrix metalloproteinase (MMP)-2 and -9 and vascular endothelial growth factors (VEGF) and increased microvascular density in the endometrial hyperplasia of women with anovulatory dysfunctional uterine bleeding. Fertil Steril. 2010;93(7):2362–7. https://doi.org/10.1016/j.fertnstert.2008.12.142.
22. Goldman S., Weiss A., Eyali V., Shalev E. Differential activity of the gelatinases (matrix metalloproteinases 2 and 9) in the fetal membranes and decidua, associated with labour. Mol Hum Reprod. 2003;9(6):367–73. https://doi.org/10.1093/molehr/gag040.
23. Teesalu T., Masson R., Basset P. et al. Expression of matrix metalloproteinases during murine chorioallantoic placenta maturation. Dev Dyn. 1999;214(3):248–58. https://doi.org/10.1002/(SICI)1097-0177(199903)214:33.0.CO;2-N.
24. Kizaki K., Ushizawa K., Takahashi T. et al. Gelatinase (MMP-2 and -9) expression profiles during gestation in the bovine endometrium. Reprod Biol Endocrinol. 2008;6:66. https://doi.org/10.1186/1477-7827-6-66.
25. Vagnoni K.E., Zheng J., Magness R.R. Matrix metalloproteinases-2 and -9, and tissue inhibitor of metalloproteinases-1 of the sheep placenta during the last third of gestation. Placenta. 1998;19(7):447–55. https://doi.org/10.1016/s0143-4004(98)91037-2.
26. Vagnoni K.E., Ginther O.J., Lunn D.P. Metalloproteinase activity has a role in equine chorionic girdle cell invasion. Biol Reprod. 1995;53(4):800–5. https://doi.org/10.1095/biolreprod53.4.800.
27. Laskowska M. Altered maternal serum matrix metalloproteinases MMP-2, MMP-3, MMP-9, and MMP-13 in severe early- and late-onset preeclampsia. BioMed Res Int. 2017:2017:6432426. https://doi.org/10.1155/2017/6432426.
28. Yu Y., Wang L., Liu T., Guan H. MicroRNA-204 suppresses trophoblastlike cell invasion by targeting matrix metalloproteinase-9. Biochem Biophys Res Commun. 2015;463(3):285291. https://doi.org/10.1016/j.bbrc.2015.05.052.
29. Eleuterio N.M., Palei A.C., Rangel Machado J.S. et al. Positive correlations between circulating adiponectin and MMP2 in preeclampsia pregnant. Pregnancy Hypertens. 2015;5(2):205–8. https://doi.org/10.1016/j.preghy.2015.03.001.
30. Woessner J.F. The family of matrix metalloproteinases. Ann N Y Acad Sci. 1994;732:11–21. https://doi.org/10.1111/j.1749-6632.1994.tb24720.x.
31. Montagnana M., Lippi G., Albiero A. et al. Evaluation of metalloproteinases 2 and 9 and their inhibitors in physiologic and pre-eclamptic pregnancy. J Clin Lab Anal. 2009;23(2):88–92. https://doi.org/10.1002/jcla.20295.
32. Oddsdottir C., Riley S.C., Leask R. et al. Dynamics of activities of matrix metalloproteinases9 and-2, and the tissue inhibitors of MMPs in fetal fluid compartments during gestation and at parturition in the mare. Theriogenology. 2011;75(6):1130–8. https://doi.org/10.1016/j.theriogenology.2010.11.02.
33. Senapati S., Wang F., Ord T. et al. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J Assist Reprod Genet. 2018;35(10):1799–808. https://doi.org/10.1007/s10815-018-1244-z.
34. Dang Y., Li W., Tran V., Khalil R.A. EMMPRIN-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone. Biochem Pharmacol. 2013;86(6):734–47. https://doi.org/10.1016/j.bcp.2013.06.030.
35. Isaka K., Usuda S., Ito H. et al. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta. 2003;24(1):53–64. https://doi.org/10.1053/plac.2002.0867.
36. Li W., Mata K.M., Mazzuca M.Q., Khalil R.A. Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem Pharmacol. 2014;89(3):370–85. https://doi.org/10.1016/j.bcp.2014.03.017.
37. Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.
38. de Sousa D.A., Pereira-Santos M.C., Serra-Caetano A. et al. Matrix metalloproteinase-9 levels are associated with brain lesion and persistent venous occlusion in patients with cerebral venous thrombosis. Thromb Haemost. 2021;121(11):1476–82. https://doi.org/10.1055/s-0041-1726094.
39. Mochizuki S., Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007;98(5):621–8. https://doi.org/10.1111/j.1349-7006.2007.00434.x.
40. Kelwick R., Desanlis I., Wheeler G.N., Edwards D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015;16(1):113. https://doi.org/10.1186/s13059-015-0676-3.
41. Kuno K., Kanada N., Nakashima E. et al. Molecular cloning of a gene encoding a new type of metalloproteinase disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem. 1997;272(1):556–62. https://doi.org/10.1074/jbc.272.1.556.
42. Apte S.S. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem. 2009;284(46):31493–7. https://doi.org/10.1074/jbc.R109.052340.
43. Porter S., Clark I.M., Kevorkian L., Edwards D.R. The ADAMTS metalloproteinases. Biochem J. 2005;386(Pt 1):15–27. https://doi.org/10.1042/BJ20040424.
44. Lee S.-Y., Lee H.-S., Gil M. et al. Differential expression patterns of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) -1, -4, -5, and -14 in human placenta and gestational trophoblastic diseases. Arch Pathol Lab Med. 2014;138(5):643–50. https://doi.org/10.5858/arpa.2012-0227-OA.
45. Chaemsaithong P., Madan I., Romero R. et al. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med. 2013;41(6):665– 81. https://doi.org/10.1515/jpm-2013-0086.
46. Kalem M.N., Kalem Z., Yüce T., Soylemez F. ADAMTS 1, 4, 12, and 13 levels in maternal blood, cord blood, and placenta in preeclampsia. Hypertens Pregnancy. 2018;37(1):9–17. https://doi.org/10.1080/10641955.2017.1397690.
47. Gokdemir I.E., Ozdegirmenci O., Elmas B. et al. Evaluation of ADAMTS12, ADAMTS16, ADAMTS18 and IL-33 serum levels in pre-eclampsia. J Matern Fetal Neonatal Med. 2016;29(15):2451–6. https://doi.org/10.3109/14767058.2015.1087497.
48. Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor cleaving-protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662–6. https://doi.org/10.1182/blood.v98.6.1662.
49. Gerritsen H.E., Robles R., Lämmle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654–61. https://doi.org/10.1182/blood.v98.6.1654.
50. Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x.
51. Hellstrom-Westas L., Ley D., Berg A.-C. et al. VWF cleaving protease (ADAMTS13) in premature infants. Acta Paediatr. 2005;94(2):205–10. https://doi.org/10.1111/j.1651-2227.2005.tb01892.x.
52. Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14–7. https://doi.org/10.1016/j.bcmd.2016.12.013.
53. Kulkarni A.A., Osmond M., Bapir M. et al. The effect of labour on the coagulation system in the term neonate. Haemophilia. 2013;19(4):533–8. https://doi.org/10.1111/hae.12115.
54. Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.
55. Stepanian A., Cohen-Moatti M., Sanglier T. et al. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.
56. Xiao J., Feng Y., Li X. et al. Expression of ADAMTS13 in normal and abnormal placentae and its potential role in angiogenesis and placenta development. Arterioscler Thromb Vasc Biol. 2017;37(9):1748–56. https://doi.org/10.1161/ATVBAHA.117.309735.
57. Laurence J. Atypical hemolytic uremic syndrome (aHUS): making the diagnosis. Clin Advs Hematol Oncol. 2012;10(10 Suppl 17):1–12.
58. Ono T., Mimuro .J, Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsisinduced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087.
59. Rutten B., Maseri A., Cianflone D. et al. Plasma levels of active Von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: a multicenter and multiethnic study. Eur Heart J Acute Cardiovasc Care. 2015;4(1):64–74. https://doi.org/10.1177/2048872614534388.
60. Makatsariya A.D., Elalamy I., Vorobev A.V. et al. Thrombotic microangiopathy in cancer patients. [Tromboticheskaya mikroangiopatiya u onkologicheskih bol'nyh]. Vestnik RAMN. 2019;74(5):323–32. (In Russ.). https://doi.org/10.15690/vramn1204.
61. Andersson H.M., Siegerink B., Luken B.M. et al. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 20129;119(6):1555– 60. https://doi.org/10.1182/blood-2011-09-380618.
62. Koo B.H., Oh D., Chung S.Y. et al. Deficiency of von Willebrand factorcleaving protease activity in the plasma of malignant patients. Thromb Res. 2002;105(6):471–6. https://doi.org/10.1016/s0049-3848(02)00053-1.
63. Lancellotti S., Basso M., Veca V. et al. Presence of portal vein thrombosis in liver cirrhosis is strongly associated with low levels of ADAMTS-13: a pilot study. Intern Emerg Med. 2016;11(7):959–67. https://doi.org/10.1007/s11739-016-1467-x.
64. Bitsadze V.O., Sukontseva T.A., Akinshina S.V. et al. Septic shock. [Septicheskij shok]. Obstetrics, Gynecology and Reproduction. 2020;14(3):314–26. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.169.
65. Aghababaei M., Perdu S., Irvine K., Beristain A.G. A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development. Mol Hum Reprod. 2014;20(3):235–49. https://doi.org/10.1093/molehr/gat084.
66. Biadasiewicz K., Fock V., Dekan S. Extravillous trophoblast-associated ADAM12 exerts pro- invasive properties, including induction of integrin beta 1-mediated cellular spreading. Biol Reprod. 2014;90(5):101. https://doi.org/10.1095/biolreprod.113.115279.
67. Yu N., Cui H., Chen X., Chang Y. First trimester maternal serum analytes and second trimester uterine artery Doppler in the prediction of preeclampsia and fetal growth restriction. Taiwan J Obstet Gynecol. 2017;56(3):358–61. https://doi.org/10.1016/j.tjog.2017.01.009.
68. El-Sherbiny W., Nasr A., Soliman A. Metalloprotease (ADAM12-S) as a predictor of preeclampsia: correlation with severity, maternal complications, fetal outcome, and Doppler parameters. Hypertens Pregnancy. 2012;31(4):442–50. https://doi.org/10.3109/10641955.2012.690059.
69. Karagiannis G., Akolekar R., Sarquis R. et al. Prediction of small-forgestation neonates from biophysical and biochemical markers at 11-13 weeks. Fetal Diagn Ther. 2011;29(2):148–54. https://doi.org/10.1159/000321694.
70. Kokozidou M., Drewlo S., Bartz C. et al. Complex patterns of ADAM12 mRNA and protein splice variants in the human placenta. Ann Anat. 2011;193(2):142–8. https://doi.org/10.1016/j.aanat.2010.12.002.
Review
For citations:
Grigorieva K.N., Bitsadze V.O., Khizroeva J.Kh., Tretyakova M.V., Blinov D.V., Makatsariya N.A., Tsibizova V.I., Nakaidze I.A., Gashimova N.R., Grandone E., Makatsariya A.D. Metalloproteinases as biochemical markers of pregnancy pathology. Obstetrics, Gynecology and Reproduction. 2022;16(1):38-47. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.275

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.